

APPENDIX 10-1

CARBON LOSS CALCULATIONS

Cover

CARBON CALCULATOR TOOL v . .

Help About...

Scottish Government and SEPA users only:

The Scottish Government
Application Status Control
Enter password
Sign in
Start Carbon Calculator

This tool calculates payback time for windfarm sited on peatlands using methods given in Nayak et al, 2008 (http://www.gov.scot/Publications/2008/06/25114657/0) and revised equations for GHG emissions (Nayak, D.R., Miller, D., Nolan, A., Smith, P. and Smith, J.U., 2010, Calculating carbon budgets of wind farms on Scottish peatland. Mires and Peat 4: Art. 9. Online: http://mires-and-peat.net/pages/volumes/map04/map0409.php

Admin

CARBON CALCULATOR TOOL v . . - APPLICATION STATUS CONTROL

Help		
Reference Code:		Search
	hodology used for culating emission ors	Status Date Status
No data available in tab	le	
PreviousNext		

Selected:

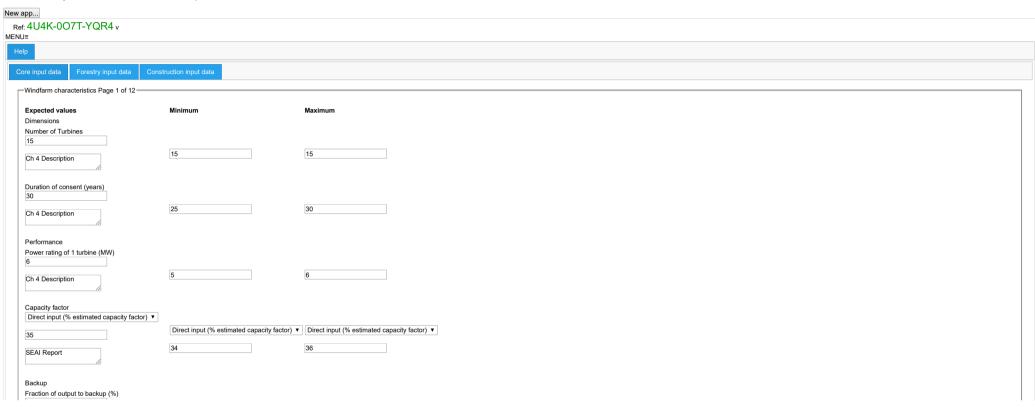
Saved Signed-off Received Consented Refused Withdrawn
Revert to original status

Start

CARBON CALCULATOR TOOL v . .

- Will the site be drained on construction of the windfarm?
- Is the soil at the site highly organic?

is the son at the site highly organic?	Maria de la companya del companya de la companya del companya de la companya de l
Does windfarm construction require a significant amount of deforestation?	If you already have an Application Reference, type it here (or paste it in the first box):
i.e. is removal in excess of keyholing the turbines within the forest boundary?	Search


New application

CoreInput

Core input data
1. Windfarm characteristics 2. Peatland 3. Bog plants 4. Forestry Plantation 5. Emission factors 6. Borrow pits 7. Foundations and hard-standing 8. Access tracks 9. Cable trenches 10. Additional peat 11. Improvement actions 12. Restoration after decomissioning 13. Methodology & application details Forestry input data

Construction input data Save Signed off for submission

Note: Results are only available once ALL data are correct and complete, and a new version will be created.

Payback Time

Payback Time Payback Time - ChartsInput Data

1. Windfarm CO2 emission saving over	Exp.	Min.	Max.
coal-fired electricity generation (t CO2 / yr)	253,865	205,510	261,118
grid-mix of electricity generation (t CO2 / yr)	69,973	56,645	71,972
fossil fuel-mix of electricity generation (t CO2 / yr)	124,173	100,521	127,721
Energy output from windfarm over lifetime (MWh)	8,278,200	5,584,500	8,514,720

Total CO2 losses due to wind farm (tCO2 eq.)	Exp.	Min.	Max.
2. Losses due to turbine life (eg. manufacture, construction, decomissioning)	78,974	64,801	79,132
3. Losses due to backup	53,217	36,956	53,217
4. Lossess due to reduced carbon fixing potential	3,572	1,056	6,205
5. Losses from soil organic matter	13,896	-2,716	82,058
6. Losses due to DOC & POC leaching	0	0	0
7. Losses due to felling forestry	6,479	3,208	6,736
Total losses of carbon dioxide	156,138	103,305	227,349

8. Total CO2 gains due to improvement of site (t CO2 eq.)	Exp.	Min.	Max.
8a. Change in emissions due to improvement of degraded bogs	0	0	0
8b. Change in emissions due to improvement of felled forestry	0	0	0
8c. Change in emissions due to restoration of peat from borrow pits	0	0	0
8d. Change in emissions due to removal of drainage from foundations & hardstanding	0	0	0
Total change in emissions due to improvements	0	0	0

RESULTS	Exp.	Min.	Max.
Net emissions of carbon dioxide (t CO2 eq.)	156,138	103,305	227,349
Courbon Dayback Time			
Carbon Payback Timecoal-fired electricity generation (years)	0.6	0.4	1.1
grid-mix of electricity generation (years)	2.2	1.4	4.0
fossil fuel-mix of electricity generation (years)	1.3	0.8	2.3

Ratio of soil carbon loss to gain by restoration (not used in Scottish applications)	No gains!	No gains!	No gains!
Ratio of CO2 ag emissions to nower generation (g/kWh) (for info only)	18 86	12 13	<i>I</i> 0 71

Payback Time - Charts

Payback Time Payback Time - Charts

Print this page

Carbon Calculator v1.6.1

Coole Wind Farm, Co. Westmeath Location: 53.729686 -7.380478

Coole Wind Farm Ltd.

Core input data

Input data	Expected value	Minimum value	Maximum value	Source of data
Windfarm characteristics				
Dimensions				
No. of turbines	15	15	15	Ch 4 Description
Duration of consent (years)	30	25	30	Ch 4 Description
Performance				
Power rating of 1 turbine (MW)	6	5	6	Ch 4 Description
Capacity factor	35	34	36	SEAI Report
Backup				
Fraction of output to backup (%)	5	5	5	SNH Carbon Calculator Guidance
Additional emissions due to reduced thermal efficiency of the reserve generation (%)	10	10	10	Fixed
Total CO2 emission from turbine life (tCO2 MW ⁻¹) (eg. manufacture, construction, decommissioning)	Calculate wrt installed capac	ity Calculate wrt installed capac	ity Calculate wrt installed capac	ity
Characteristics of peatland before windfarm development				
Type of peatland	Acid bog	Acid bog	Acid bog	Ch 10 Air & Climate
Average annual air temperature at site (°C)	9.3	4.5	15	Ch 10 Air & Climate
Average depth of peat at site (m)	3.2	0	7.8	Geotechnical & Peat Stability Assessment
C Content of dry peat (% by weight)	55	50	60	Default value used
Average extent of drainage around drainage features at site (m)	15	5	20	Ch 9 Water
Average water table depth at site (m)	0.3	0.1	0.5	Ch 9 Water
Dry soil bulk density (g cm ⁻³)	0.1	0.09	0.11	Default value used
Characteristics of bog plants				
Time required for regeneration of bog plants after restoration (years)	10	5	15	Best Practice in Raised Bog Restoration in Ireland
Carbon accumulation due to C fixation by bog plants in undrained peats (tC ha ⁻¹ yr ⁻¹)	0.25	0.2	0.3	SNH Guidance default value
Forestry Plantation Characteristics Input data	Expected value	Minimum value	Maximum value	Source of data
Area of forestry plantation to be felled (ha)	Expected value 16.36	10	16.55	Source of data Ch 4 Description
Average rate of carbon sequestration in timber (tC ha ⁻¹ yr ⁻¹)	3.6	3.5	3.7	SNH Value for Sitka Spruce
Counterfactual emission factors				
Coal-fired plant emission factor (t CO2 MWh ⁻¹)	0.92	0.92	0.92	
Grid-mix emission factor (t CO2 MWh ⁻¹)	0.25358	0.25358	0.25358	
Fossil fuel-mix emission factor (t CO2 MWh ⁻¹)	0.45	0.45	0.45	
D 14				

5. Loss of soil CO2 (a, b)

Emissions due to loss of soil organic carbon
Loss of C stored in peatland is estimated from % site lost by peat removal (table 5a), CO2 loss from removed peat (table 5b), % site affected by drainage (table 5c), and the CO2 loss from drained peat (table 5d).

5. Loss of soil C02

	Exp.	Min.	Max.
CO2 loss from removed peat (t CO2 equiv.)	2482.07	-2715.83	4192.76
CO2 loss from drained peat (t CO2 equiv.)	11413.92	0	77865.71
RESULTS			
Total CO2 loss from peat (removed + drained) (t CO2 equiv.)	13895.99	-2715.83	82058.47
Additional CO2 payback time of windfarm due to loss of soil C			
coal-fired electricity generation (months)	0.66	-0.16	3.77
grid-mix of electricity generation (months)	2.38	-0.58	13.68
fossil fuel - mix of electricity generation (months)	1.34	-0.32	7.71

${\rm CO_2}$ loss from removed peats

If peat is treated in such a way that it is permanently restored, so that less than 100% of the C is lost to the atmosphere, a lower percentage can be entered in cell C10.

5b. CO2 loss from removed peat

	Exp.	Min.	Max.
CO2 loss from removed peat (t CO2)	14617.42	6830.07	22324.41
CO2 loss from undrained peat left in situ (t CO2)	12135.34	9545.91	18131.65
RESULTS			
CO2 loss atributable to peat removal only (t CO2)	2482.07	-2715.83	4192.76

Volume of Peat Removed

% site lost by peat removal is estimated from peat removed in borrow pits, turbine foundations, hard-standing and access tracks. If peat is removed for any other reason, this must be added in as additional peat excavated in the core input data entry.

5a. Volume of peat removed

	Exp.	Min.	Max.
Peat removed from borrow pits			
Area of land lost in borrow pits (m2)	60098	46800	75600
Volume of peat removed from borrow pits (m3)	0	0	0
Peat removed from turbine foundations			
Area of land lost in foundation (m2)	8640	8640	8640
Volume of peat removed from foundation area (m3)	3110.4	432	4406.4
Peat removed from hard-standing			
Area of land lost in hard-standing (m2)	70125	68040	72240
Volume of peat removed from hard-standing area (m3)	25245	3402	36842.4
Peat removed from access tracks			
Area of land lost in floating roads (m2)	60810	60000	61800
Volume of peat removed from floating roads (m3)	42567	36000	49440
Area of land lost in excavated roads (m2)	7195	7000	9000
Volume of peat removed from excavated roads (m3)	0	0	0
Area of land lost in rock-filled roads (m2)	0	0	0
Volume of peat removed from rock-filled roads (m3)	0	0	0
Total area of land lost in access tracks (m2)	68005	67000	70800
Total volume of peat removed due to access tracks (m3)	42567	36000	49440
RESULTS			
Total area of land lost due to windfarm construction (m2)	208068	191680	228480
Total volume of peat removed due to windfarm construction (m3)	72482.4	41394	92248.8

5. Loss of soil CO2 (c,d,e)

ayback Time

Payback Time - ChartsInput Dat

Volume of peat drained

Extent of site affected by drainage is calculated assuming an average extent of drainage around each drainage feature as given in the input data.

5c. Volume of peat drained

	Exp.	Min.	Max.
Total area affected by drainage around borrow pits (m2)	17370	5000	25600
Total volume affected by drainage around borrow pits (m3)	0	0	0
Peat affected by drainage around turbine foundation and hardstanding			
Total area affected by drainage of foundation and hardstanding area (m2)	98100	29400	138000
Total volume affected by drainage of foundation and hardstanding area (m3)	17658	735	35190
Peat affected by drainage of access tracks			
Total area affected by drainage of access track(m2)	408030	174000	533800
Total volume affected by drainage of access track(m3)	182430	72000	260590
Peat affected by drainage of cable trenches			
Total area affected by drainage of cable trenches(m2)	240000	79000	324000
Total volume affected by drainage of cable trneches(m3)	150000	0	729000
Drainage around additional peat excavated			
Total area affected by drainage (m2)	2548.85	692.54	3712.62
Total volume affected by drainage (m3)	3313.5	900.3	4826.41
RESULTS			
Total area affected by drainage due to windfarm (m2)	766048.85	288092.54	1025112.62
Total volume affected by drainage due to windfarm (m3)	353401.5	73635.3	1029606.41

CO2 loss due to drainage

Note, CO2 losses are calculated using two approaches: IPCC default methodology and more site specific equations derived for this project. The IPCC methodology is included because it is the established approach, although it contains no site detail. The new equations have been derived directly from experimental data for acid bogs and fens (see Nayak et al., 2008 - Final report).

5d. CO2 loss from drained peat

	Exp.	Min.	Max.
Calculations of C Loss from Drained Land if Site is NOT Restored after Decomissioning			
Total GHG emissions from Drained Land (t CO2 equiv.)	71269.95	12149.93	249167.02
Total GHG emissions from Undrained Land (t CO2 equiv.)	59856.03	12149.93	171301.3
Calculations of C Loss from Drained Land if Site IS Restored after Decomissioning			
Losses if Land is Drained			
CH4 emissions from drained land (t CO2 equiv.)	-203.47	-523.3	2301.23
CO2 emissions from drained land (t CO2)	53402.27	14870.67	116027.61
Total GHG emissions from Drained Land (t CO2 equiv.)	71269.95	12149.93	249167.02
Losses if Land is Undrained			
CH4 emissions from undrained land (t CO2 equiv.)	284.67	-523.3	12343.29
CO2 emissions from undrained land (t CO2)	44394.31	14870.67	69007.31
Total GHG emissions from Undrained Land (t CO2 equiv.)	59856.03	12149.93	171301.3
RESULTS			
Total GHG emissions due to drainage (t CO2 equiv.)	11413.92	0	77865.71

Emission rates from soils

Note, CO2 losses are calculated using two approaches: IPCC default methodology and more site specific equations derived for this project. The IPCC methodology is included because it is the established approach, although it contains no site detail. The new equations have been thoroughly tested against experimental data (see Nayak et al, 2008 - Final report).

5e. Emission rates from soils

	Exp.	Min.	Max.
Calculations following IPCC default methodology			
Flooded period (days/year)	178	178	178
Annual rate of methane emission (t CH4-C/ha year)	0.04	0.04	0.04
Annual rate of carbon dioxide emission (t CO2/ha year)	35.2	35.2	35.2
Calculations following ECOSSE based methodology			

7. Forestry CO2 loss

Payback Time Payback Time - ChartsInput

CO₂ loss from forests - calculation using detailed management information

Forest carbon calculator (Perks et al, 2009)

Total potential carbon squestration loss due to felling of forestry for the wind farm (t CO2)
Total emissions due to cleared land (t CO2)
Emissions due to harvesting operations (t CO2)
Fossil fuel equivalent saving from use of felled forestry as biofuel (t CO2)
Fossil fuel equivalent saving from use of replanted forestry as biofuel (t CO2)
RESULTS
Total carbon loss associated with forest management(t CO2)

Emissions due to forest felling - calculation using simple management data

Emissions due to forestry felling are calculated from the reduced carbon sequestered per crop rotation. If the forestry was due to be removed before the planned development, this C loss is not attributable to the wind farm and so the area of forestry to be felled should be entered as zero.

	Exp.	Min.	Max.
Area of forestry plantation to be felled (ha)	16.36	10	16.55
Carbon sequestered (t C ha-1 yr-1)	3.6	3.5	3.7
Lifetime of windfarm (years)	30	25	30
Carbon sequestered over the lifetime of the windfarm (t C ha-1)	108	87.5	111
RESULTS			
Total carbon loss due to felling of forestry (t CO2)	6478.62	3208.36	6735.91
Additional CO2 payback time of windfarm due to management of forestry			
coal-fired electricity generation (months)	0.31	0.19	0.31
grid-mix of electricity generation (months)	1.11	0.68	1.12
fossil fuel - mix of electricity generation (months)	0.63	0.38	0.63

8. CO2 gain - site improvement

Gains due to site improvement

Note, CO2 losses are calculated using two approaches: IPCC default methodology and more site specific equations derived for this project. The IPCC methodology is included because it is the established approach, although it contains no site detail. The new equations have been thoroughly tested against experimental data (see Nayak et al, 2008 - Final report).

Degraded Bog

g	Exp.	Min.	Max.
1. Description of site			
Area to be improved (ha)	0	0	0
Depth of peat above water table before improvement (m)	0	0	0
Depth of peat above water table after improvement (m)	0	0	0
2. Losses with improvement			
Improved period (years)	0	0	0
Selected annual rate of methane emissions (t CH4-C ha-1 yr-1)	0.496	0.479	0.516
CH4 emissions from improved land (t CO2 equiv.)	0	0	0
Selected annual rate of carbone dioxide emissions (t CO2 ha-1 yr-1)	0.349	-0.928	1.865
CO2 emissions from improved land (t CO2 equiv.)	0	0	0
Total GHG emissions from improved land (t CO2 eqiv.)	0	0	0
3. Losses without improvement			
Improved period (years)	0	0	0
Selected annual rate of methane emissions (t CH4-C ha-1 yr-1)	0.496	0.479	0.516
CH4 emissions from improved land (t CO2 equiv.)	0	0	0

Borrow Pits

	Exp.	Min.	Max.
1. Description of site			
Area to be improved (ha)	0	0	0
Depth of peat above water table before improvement (m)	0	0	0
Depth of peat above water table after improvement (m)	0	0	0
2. Losses with improvement			
Improved period (years)	0	0	0
Selected annual rate of methane emissions (t CH4-C ha-1 yr-1)	0.496	0.479	0.516
CH4 emissions from improved land (t CO2 equiv.)	0	0	0
Selected annual rate of carbone dioxide emissions (t CO2 ha-1 yr-1)	0.349	-0.928	1.865
CO2 emissions from improved land (t CO2 equiv.)	0	0	0
Total GHG emissions from improved land (t CO2 eqiv.)	0	0	0
3. Losses without improvement			
Improved period (years)	0	0	0
Selected annual rate of methane emissions (t CH4-C ha-1 yr-1)	0.496	0.479	0.516
CH4 emissions from improved land (t CO2 equiv.)	0	0	0

Felled Forestry

·	Exp.	Min.	Max.
1. Description of site			
Area to be improved (ha)	0	0	
Depth of peat above water table before improvement (m)	0	0	
Depth of peat above water table after improvement (m)	0	0	
2. Losses with improvement			
Improved period (years)	0	0	
Selected annual rate of methane emissions (t CH4-C ha-1 yr-1)	0.496	0.479	0.51
CH4 emissions from improved land (t CO2 equiv.)	0	0	
Selected annual rate of carbone dioxide emissions (t CO2 ha-1 yr-1)	0.349	-0.928	1.86
CO2 emissions from improved land (t CO2 equiv.)	0	0	
Total GHG emissions from improved land (t CO2 eqiv.)	0	0	
3. Losses without improvement			
Improved period (years)	0	0	
Selected annual rate of methane emissions (t CH4-C ha-1 yr-1)	0.496	0.479	0.51
CH4 emissions from improved land (t CO2 equiv.)	0	0	

Foundations & Hardstanding

	Exp.	Min.	Max.
1. Description of site			
Area to be improved (ha)	0	0	0
Depth of peat above water table before improvement (m)	0	0	0
Depth of peat above water table after improvement (m)	0	0	0
2. Losses with improvement			
Improved period (years)	30	25	30
Selected annual rate of methane emissions (t CH4-C ha-1 yr-1)	0.496	0.479	0.516
CH4 emissions from improved land (t CO2 equiv.)	0	0	0
Selected annual rate of carbone dioxide emissions (t CO2 ha-1 yr-1)	0.349	-0.928	1.865
CO2 emissions from improved land (t CO2 equiv.)	0	0	0
Total GHG emissions from improved land (t CO2 eqiv.)	0	0	0
3. Losses without improvement			
Improved period (years)	30	25	30
Selected annual rate of methane emissions (t CH4-C ha-1 yr-1)	0.496	0.479	0.516
CH4 emissions from improved land (t CO2 equiv.)	0	0	0

3. CO2 loss backup

Payback Time Payback Time - ChartsInput Data

Emissions due to backup power generation

CO2 loss due to back up is calculated from the extra capacity required for backup of the windfarm given in the input data.

Wind generated electricity is inherently variable, providing unique challenges to the electricity generating industry for provision of a supply to meet consumer demand (Netz, 2004). Backup power is required to accompany wind generation to stabilise the supply to the consumer. This backup power will usually be obtained from a fossil fuel source. At a high level of wind power peneration in the overall generating mix, and with current grid management techniques, the capacity for fossil fuel backup may become strained because it is being used to balance the fluctuating consumer demand with a variable and highly upredictable output from wind turbines (White, 2007). The Carbon Trust (Carbon Trust (Carbon Trust) (Carbon Tru

Assumption: Backup assumed to be by fossil-fuel-mix of electricity generation. Note that hydroelectricity may also be used for backup, so this assumption may make the value for backup generation too high. These assumptions should be revisited as technology develops.

	Exp.	Min.	Max.
Reserve energy (MWh/yr)	39,420	32,850	39,420
Annual emissions due to backup from fossil fuel-mix of electricity generation (tCO2/yr)	1,774	1,478	1,774
RESULTS			
Total emissions due to backup from fossil fuel-mix of electricity generation (tCO2)	53,217	36,956	53,217

1. CO2 emission saving

Emissions due to turbine life
The carbon payback time of the windfarm due to turbine life (eg. manufacture, construction, decomissioning) is calculated by comparing the emissions due to turbine life with carbon-savings achieved by the windfarm while displacing electricity generated from coal-fired capacity or grid-mix.

Capacity factor calculated from forestry data

		Capacity factor	Wind speed	Average site	Annual theoretical energy
Area name	Value type	(%)	ratio	windspeed (m/s)	output (MW / turbine yr)

Capacity factor - Direct input					
	Exp.	Min.	Max.		
Capacity factor (%)	35.0	34.0	36.0		

	Exp.	Min.	Max.
Annual energy output from windfarm (MW/yr)			
RESULTS			
Emissions saving over coal-fired electricity generatio	253,865	205,510	261,118
Emissions saving over grid-mix of electricity generati	69,973	56,645	71,972
Emissions saving over fossil fuel - mix of electricity g	124,173	100,521	127,721

2. CO2 loss turbine life

Emissions due to turbine life
The carbon payback time of the windfarm due to turbine life (eg. manufacture, construction, decomissioning) is calculated by comparing the emissions due to turbine life with carbon-savings achieved by the windfarm while displacing electricity generated from coal-fired capacity or grid-mix.

Calculation of emissions with relation to installed capacity

	Exp.	Min.	Max.
Emissions due to turbine frome energy output (t CO2)	5139	4204	5139
Emissions due to cement used in construction (t CO2)	1896	1738	2054

RESI	ш	тς	

REGGETO			
	Exp.	Min.	Max.
Losses due to turbine life (manufacture, construction, etc.) (t CO2)	78974	64801	79132
Additional CO2 payback time of windfarm due to turbine life			
coal-fired electricity generation (months)	4	4	4
grid-mix of electricity generation (months)	14	14	13
fossil fuel - mix of electricity generation (months)	8	8	7

urect	input c	f emissions	due to) turbine	lite

	Exp.	Min.	Max.	
Emissions due to turbine life (tCO2/windfarm)				

4. Loss CO2 fixing pot.

Emissions due to loss of bog plants

Annual C fixation by the site is calculated by multiplying area of the windfarm by the annual C accumulation due to bog plant fixation.

	Exp.	Min.	Max.
Area where carbon accumulation by bog plants is lost (ha)	97.41	47.98	125.36
Total loss of carbon accumulation up to time of restoration (tCO2 eq./ha)	37	22	50
RESULTS			
Total loss of carbon fixation by plants at the site (t CO2)	3572	1056	6205
Additional CO2 payback time of windfarm due to loss of CO2 fixing potential			
coal-fired electricity generation (months)	0	0	0
grid-mix of electricity generation (months)	1	0	1
fossil fuel - mix of electricity generation (months)	0	0	1

6. CO2 loss DOC & POC

Emissions due to loss of DOC and POC

Note, CO2 losses from DOC and POC are calculated using a simple approach derived from generic estimates of the percentage of the total CO2 loss that is due to DOC or POC leaching.

No POC losses for bare soil included yet. If extensive areas of bare soil is present at site need modified calculation (Birnie et al, 1991)

	Exp.	Min.	Max.
Gross CO2 loss from restored drained land (t CO2)	0.00	0.00	0.00
Gross CH4 loss from restored drained land (t CO2 equiv.)	0.00	0.00	0.00
Gross CO2 loss from improved land (t CO2)	0.00	0.00	0.00
Gross CH4 loss from improved land (t CO2 equiv.)	0.00	0.00	0.00
Total gaseous loss of C (t C)	0.00	0.00	0.00
Total C loss as DOC (t C)	0.00	0.00	0.00
Total C loss as POC (t C)	0.00	0.00	0.00
RESULTS			
Total CO2 loss due to DOC leaching (t CO2)	0.00	0.00	0.00
Total CO2 loss due to POC leaching (t CO2)	0.00	0.00	0.00
Total CO2 loss due to DOC & POC leaching (t CO2)	0.00	0.00	0.00
Additional CO2 payback time of windfarm due to DOC & POC			
coal-fired electricity generation (months)	0	0	0
grid-mix of electricity generation (months)	0	0	0
fossil fuel - mix of electricity generation (months)	0	0	0